A DECISION ANALYTIC APPROACH TO ASSESSING POLICY TRADEOFFS IN MALARIA CONTROL IN LIBERIA

Dohyeong Kim*, Ph.D. North Carolina Central University Randall Kramer, Ph.D. Duke University

LIHEDE Jubilee Greensboro, NC August 2009

Context:

Need for Evidence-based Decision-Making

Malaria is the leading cause of mortality and morbidity in Liberia with major economic consequences

- 40% of all outpatients, 18% of inpatient deaths
- 21,000 deaths among children<5 a year
- Entire population is at risk of malaria

A number of strategies are available including bed nets and indoor residual spraying for vector control and a variety of diagnostic strategies and drug therapies

However, it is often difficult for decision-makers to determine the best combination of interventions given the constraints within local health care delivery systems, as well as in vector control infrastructure (e.g. DDT debates)

MDAST: A Decision Analysis Tool

- MDAST = Malaria Decision Analysis Support Tool
- Multi-disciplinary approach: Medicine, Risk analysis, Environmental science, Economics, Entomology, etc.
- Implementation science: Scientific knowledge translated into actual practice within specific settings
- **Rapid prototyping:** Tool is constructed and modified iteratively in a quick turnaround cycle
- Currently, a prototype model is being developed for 3 countries in east Africa (i.e. Tanzania, Uganda, and Kenya)... looking for a country in west Africa to apply

Current Status of Malaria Control in Liberia

- * Malaria Indicator Survey (MIS) in 2005
- * LISGIS (2008 Population and Housing Census) in 2009

(1) Disease Treatment

- Only 3.2% of children under 5 with fever received first-line treatment for malaria
- Only 4% of pregnant women received treatment during pregnancy

(2) Vector Control

- Only 18% of HHs owned a "net"
- Only 2.6% of children under 5 slept under an ITN
- Only 4.3% of population were covered by IRS
- No up-to-date information on ACT or IPT coverage

Current Malaria Control Policy in Liberia: PMI

* President's Malaria Initiative (PMI): Target by 2010

(1) Disease Treatment

- 85% of children under 5 with suspected malaria receive treatment with an anti-malarial drug in accordance with national policies within 24 hrs of onset of symptoms
- 85% of pregnant women receive 2 or more doses of IPTs during pregnancy
- 85% of government health facilities have ACTs available

(2) Vector Control

- 90% of HHs nationwide own an ITN
- 85% of children under 5 nationwide sleep under an ITN
- 85% of pregnant women nationwide sleep under an ITN
- 85% of targeted houses are covered by IRS per year
- 85% of pregnant women and children <5 <u>sleep under an</u> <u>ITN or in a house sprayed with IRS</u> in the last 6 months

Limitation of the Plan

- 1. Lacks sufficient discussion among all stakeholders based on scientific knowledge from different disciplines
- 2. Lacks considerations about multiple aspects: health, environmental, and social impacts of each strategy
- 3. Lacks integrative approach of VC and DT
- 4. Lacks sustainability concerns

Project Objectives

1. Develop an "effective" and "practical" decision support tool to improve the implementation of malaria control strategies, including both vector control and disease management

2. To create an agenda for policy-relevant malaria research

Why Decision Analysis?

Five challenges to address malaria:

- High Stakes Environment: Mistakes are very costly
- Multiple Actors at Multiple Scales: promote discussions
- Complex Tradeoffs: health, social, environmental aspects
- Dynamics, Interdependencies and Uncertainties
- Complex Human-Environment Interactions

DA can bring together multiple perspectives and areas of expertise, thus fostering collaboration and dialogue

A Conceptual Model

Overall Goal of MDAST: Trace out ALL probable impacts of different combination of malaria control policies on multiple outcomes

Prototype MDAST

• Developed using Analytica® software: a visual tool for creating, analyzing, and communicating decision models

- •Uses influence diagrams, which show causal linkages among:
 - Decisions
 - Uncertainty and chance events
 - Processes
 - Outcomes

Influence Diagram Illustrating MDAST Structure

Screenshot of Prototype MDAST

A Diagram - Prototype Malaria Decision Analysis Support Tool 07:09 00:35 EMERALD-F211973 Joy Dad ScreenHunter		
Input Parameters b. ITN Parameters a. Demographic & Disease Parameters b. ITN Parameters Total population Edit Table Value of statistical life (VSL) (USD) Cost of illness (COI) (USD) 200 Retreament interval of ITN Replacement interval of LLIN (Year) 5	Instrument Instrument C. IRS Parameters Instrument Ave. cost of IRS with DDT per HH (USD) 3 Unit cost Acceptance rate of IRS with DDT 0.7 Unit cost Ave. cost of IRS with pyrethroid per HH (USD) 10 Unit cost Acceptance rate of IRS with pyrethroid 0.9 Unit cost	of IPT (USD) 2.5 of RDT (USD) 2.5 of RDT (USD) 2.5 of ACT (USD) 3 of SP (USD) 0.2
A. ITN B. IRS C. Environmental Management 1. Type of net AII 1. Type of net AII 2. Subsidy level 2. Coverage 3. Schedule (% of HH covered) (per year) Under Development Epidemic 0.5 0 AII AII III	Disease Management Strategy A. IPT B. Diagnosis 1. Coverage 1. Strategy Children<5 Preg. women Children<5 Preg. women Adults 0.5 0.5 All All All All	C. Treatment 1. Type of drug 2. Subsidy level Children<5 Preg. women Adults 0.5 0.5 0.5 0
Results (Annual) Program costs borne by households (USD) Calc mid Malaria cases avoided Program costs borne by public sector (USD) Calc mid Malaria deaths avoided Total Program Cost (USD) Calc mid Total Malaria Burden Cost Avoided Program cost per person covered (USD) Calc mid Malaria burden cost avoided per person Program cost per case avoided (USD) Calc mid Malaria burden cost avoided per person Program cost per case avoided (USD) Calc mid Program cost per death avoided (USD) Calc mid	Calc mid Under Developmen Calc mid Total Environmental Impact Cost I (USD) Calc mid on (USD) Calc mid Total Environmental Impact Cost Total Economic Impact to Society	at Click here for model details

MDAST Output

MDAST Output (cont.)

Advancing the Tool

More accurate sub-models

- •Scale
- Data
 - Infection characteristics
 - Vector abundance and genetics

Example of More Detailed Submodel: Vector Ecology and Insecticide Resistance

Mosquito Abundance and Infection Pattern Over Time (in years)

Future Steps for Use of the Tool

- Engage stakeholders through structured interviews:
 on available control strategies, their health, social, and environmental consequences
 coordination and discussion across different sectors
- Conduct stakeholder workshops for testing, training and refinement of the prototype model....then, fostering a policy dialogue among stakeholders
- Use MDAST for value of information analyses to identify key knowledge gaps and create policyrelevant research agenda (what data would be beneficial in reducing uncertainty?)

Acknowledgements

Collaborators:

Clifford Mutero, Africa Policy Institute

Leonard Mboera, National Institute of Medical Research, Tanzania

Marie Lynn Miranda, Duke University

Zachary Brown, Duke University

K.L. Dickinson, University of Wisconsin